首页> 外文OA文献 >Ab initio molecular dynamics study of the interlayer and micropore structure of aqueous montmorillonite clays
【2h】

Ab initio molecular dynamics study of the interlayer and micropore structure of aqueous montmorillonite clays

机译:蒙脱土黏土层间和微孔结构的从头算分子动力学研究。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ab initio molecular dynamics simulations have been performed to gain an understanding of the interfacial microscopic structure and reactivity of fully hydrated clay edges. The models studied include both micropore and interlayer water. We identify acidic sites through dissociation mechanisms; the resulting ions can be stabilized by both micropore and interlayer water. We find clay edges possess a complex amphoteric behavior, which depends on the face under consideration and the location of isomorphic substitution. For the neutral (110) surface, we do not observe any dissociation on the timescale accessible. The edge terminating hydroxyl groups participate in a hydrogen bonded network of water molecules that spans the interlayer between periodic images of the clay framework. With isomorphic substitutions in the tetrahedral layer of the (110) clay edge, we find the adjacent exposed apical oxygen behaves as a Br?nsted base and abstracts a proton from a nearby water molecule, which in turn removes a proton from an AlOH group. With isomorphic substitutions in the octahedral layer of the (110) clay edge the adjacent exposed apical oxygen atom does not abstract a proton from the water molecules, but increases the number of hydrogen bonded water molecules (from one to two). Acid treated clays are likely to have both sites protonated. The (010) surface does not have the same interfacial hydrogen bonding structure; it is much less stable and we observe dissociation of half the terminal SiOH groups (?Si-O-H??SiO-+H+) in our models. The resulting anions are stabilized by solvation from both micropore and interlayer water molecules. This suggests that, when fully hydrated, the (010) surface can act as a Br?nsted acid, even at neutral pH.
机译:从头开始进行分子动力学模拟,以了解界面微观结构和完全水合粘土边缘的反应性。研究的模型包括微孔和层间水。我们通过解离机制确定酸性位点;生成的离子可以同时被微孔和层间水稳定。我们发现黏土边缘具有复杂的两性行为,这取决于所考虑的面和同构置换的位置。对于中性(110)表面,我们在可访问的时间尺度上未观察到任何解离。边缘末端的羟基参与水分子的氢键网络,该分子跨过粘土骨架的周期性图像之间的中间层。通过在(110)粘土边缘的四面体层中进行同构取代,我们发现相邻的暴露的顶端氧的行为类似于布朗斯台德碱,并从附近的水分子中提取出质子,进而从​​AlOH基团中除去了质子。在(110)黏土边缘的八面体层中进行同构取代时,相邻的暴露的顶端氧原子不会从水分子中提取质子,但会增加氢键水分子的数量(从一到两个)。酸处理过的粘土可能会使两个位置都质子化。 (010)表面不具有相同的界面氢键结构;它的稳定性要差得多,我们在模型中观察到一半的末端SiOH基团(?Si-O-H ?? SiO- + H +)解离了。所得阴离子通过微孔和层间水分子的溶剂化作用而稳定。这表明,当完全水合时,即使在中性pH值下,(010)表面也可以充当布朗斯台德酸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号